On irreducible n-ary quasigroups with reducible retracts
نویسنده
چکیده
An n-ary operation q : Σn → Σ is called an n-ary quasigroup of order |Σ| if in x0 = q(x1, . . . , xn) knowledge of any n elements of x0, . . . , xn uniquely specifies the remaining one. An n-ary quasigroup q is permutably reducible if q(x1, . . . , xn) = p(r(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(n)) where p and r are (n− k + 1)-ary and k-ary quasigroups, σ is a permutation, and 1 < k < n. For even n we construct a permutably irreducible n-ary quasigroup of order 4 such that all its retracts obtained by fixing one variable are permutably reducible. We use a partial Boolean function that satisfies similar properties. For odd n the existence of permutably irreducible n-ary quasigroups with permutably reducible (n − 1)-ary retracts is an open question; however, there are nonexistence results for 5-ary and 7-ary quasigroups of order 4.
منابع مشابه
On reducibility of n-ary quasigroups, II
An n-ary operation Q : Σ → Σ is called an n-ary quasigroup of order |Σ| if in the equation x0 = Q(x1, . . . , xn) knowledge of any n elements of x0, . . . , xn uniquely specifies the remaining one. Q is permutably reducible ifQ(x1, . . . , xn) = P ` R(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(n) ́ where P and R are (n − k + 1)-ary and k-ary quasigroups, σ is a permutation, and 1 < k < n. An m-a...
متن کاملun 2 01 1 On connection between reducibility of an n - ary quasigroup and that of its retracts 1 Denis
An n-ary operation Q : Σ → Σ is called an n-ary quasigroup of order |Σ| if in the equation x0 = Q(x1, . . . , xn) knowledge of any n elements of x0, . . . , xn uniquely specifies the remaining one. An n-ary quasigroup Q is (permutably) reducible if Q(x1, . . . , xn) = P ( R(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(n) ) where P and R are (n−k+1)-ary and k-ary quasigroups, σ is a permutation, a...
متن کاملOn reducibility of n-ary quasigroups
An n-ary operation Q : Σ → Σ is called an n-ary quasigroup of order |Σ| if in the equation x0 = Q(x1, . . . , xn) knowledge of any n elements of x0, . . . , xn uniquely specifies the remaining one. Q is permutably reducible if Q(x1, . . . , xn) = P ( R(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(n) ) where P and R are (n− k+1)-ary and kary quasigroups, σ is a permutation, and 1 < k < n. Anm-ary ...
متن کاملn-Ary Quasigroups of Order 4
We characterize the set of all n-ary quasigroups of order 4: every n-ary quasigroup of order 4 is permutably reducible or semilinear. Permutable reducibility means that an n-ary quasigroup can be represented as a composition of k-ary and (n− k +1)-ary quasigroups for some k from 2 to n−1, where the order of arguments in the representation can differ from the original order. The set of semilinea...
متن کاملA New Cryptographic Property Based on the Orthogonality of Quasigroups
In order to achieve better cryptographic properties of quasigroups of order 4, we make a new classification. In our research we use an approach with generalized quasigroup orthogonality, which leads us to this interesting classification, on reducible and irreducible quasigroups. Existence of the classes of reducible and irreducible quasigroups depends on the property of orthogonality of quasigr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 29 شماره
صفحات -
تاریخ انتشار 2008